Ektimo

Report No.: R015889 **Date:** 15/01/2024 Page: 2 of 11

Ektimo

Document Information

Client Name: Clingcast Metals Pty Ltd

Report Number: R015889

Date of Issue: 15 January 2024

Attention: Megan Miller

Address: 98 Bath Rd

Kirrawee NSW 2232

Testing Laboratory: Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

NATA Accredited Laboratory
No. 14601

This document is confidential and is prepared for the exclusive use of Clingcast Metals Pty Ltd and those granted permission by Clingcast Metals Pty Ltd. The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo terms of NATA accreditation as described in the Test Methods table. This does not include calculations that use data supplied by third-parties, comments, conclusions, or recommendations based upon the results. Refer to Test Methods section for full details of testing covered by NATA accreditation.

Report No.: R015889 **Date:** 15/01/2024 Page: 3 of 11

Ektimo

Table of Contents

1	E	xecutive Summary	2
	1.1	Background	∠
	1.2	Project Objective & Overview	۷۷
	1.3	Licence Comparison	4
2	R	esults	5
	2.1	Baghouse Stack	5
3	Si	ample Plane Compliance	
	3.1	Baghouse Stack	
4	Р	lant Operating Conditions	7
5	T	est Methods	8
6	D	eviations to Test Methods	9
7	Q	uality Assurance/Quality Control Information	9
8		efinitions	
9	Α	ppendices	11

Appendix A: Site Image

Appendix B: Chain(s) of Custody

Appendix C: Laboratory Results

Report No.: R015889 **Date:** 15/01/2024 Page: 4 of 11

Ektimo

1 Executive Summary

1.1 Background

Ektimo was engaged by Clingcast Metals Pty Ltd to perform emission testing at their Kirrawee plant in accordance with Environmental Licence 21514. Testing was performed at the commencement of the casting process.

1.2 Project Objective & Overview

The objective of the project was to conduct a monitoring programme to quantify emissions from one (1) discharge point to determine compliance with Clingcast Metals Pty Ltd's Environmental Licence.

Monitoring was performed as follows:

Location	Test Date	Test Parameters*
Baghouse Stack	6 December 2023	Solid particles Carbon dioxide, oxygen Metals Type 1 & 2 substances (Sb, As, Cd, Pb, Be, Cr, Co, Mn, Ni, Se, Sn, V) Specialised volatile organic compounds (VOCs) Odour and character

 $[\]ensuremath{^{*}}$ Flow rate, velocity, temperature, and moisture were also determined.

All results are reported on a dry basis at STP (except odour wet – STP).

Plant operating conditions have been noted in this report.

1.3 Licence Comparison

The following licence comparison table shows that all analytes are within the licence limit set by the NSW EPA as per licence 21514 (last amended on 5 May 2021).

Location Description	Pollutant	Units	Licence Limit	Detected Values
	Total solid particles	mg/m³ at STP dry	5	4.5
Baghouse Stack	Type 1 & 2 substances in aggregate	mg/m³ at STP dry	0.1	≤0.035
	Volatile organic compounds (as n-propane)	mg/m³ at STP dry	5	3.9

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

Report No.: R015889 **Date:** 15/01/2024 Page: 5 of 11

Ektimo

2 Results

2.1 Baghouse Stack

Date	0/12/2023		Cilent	Citingcast Metais	
Report	R015889		Stack ID	Baghouse Stack	
Licence No.	21514		Location	Kirrawee	
Ektimo Staff	Aaron Davis / James Cullen		State	NSW	
Process Conditions	Cast Iron Furnace 1200kg cast				231129
Stack Parameters					
Moisture content, %	v/v	1			
Gas molecular weig	ht, g/g mole	28.9 (wet)		29.0 (dry)	
Gas density at STP, k	cg/m³	1.29 (wet)		1.29 (dry)	
Gas density at disch	arge conditions, kg/m³	1.15			
Gas Flow Parameter	rs				
Flow measurement	time(s) (hhmm)	1435 & 1605			
Temperature, °C		33			
Temperature, K		306			
Velocity at sampling	g plane, m/s	12			
Volumetric flow rate	e, actual, m³/s	17			
Volumetric flow rate	e (wet STP), m³/s	15			
Volumetric flow rate	e (dry STP), m³/s	15			
Mass flow rate (wet	basis), kg/h	71000			

Gas Analyser Results	Average	Minimum	Maximum
Sampling time	1440 - 1602	1440 - 1602	1440 - 1602
	Concentration % v/v	Concentration % v/v	Concentration % v/v
Carbon dioxide	<0.4	<0.4	<0.4
Oxygen	20.9	20.7	20.9

Odour Results				
Sampling time	1440 - 1455			
	Odourant Concentration Flow Rate ou ou.m³/min			
Results	270 250000			
Lower uncertainty limit	270			
Upper uncertainty limit	270			
Odour character	musty, water			
Analysis date & time	07/12/23, 1046			
Holding time	19 hours			
Dilution factor	1			
Bag material	Nalophan			
Butanol threshold (ppb)	44.8			
Laboratory temp (°C)	22			

Report No.: R015889 **Date:** 15/01/2024 Page: 6 of 11

Ektimo

Date 6/12/2023 Client Clingcast Metals R015889 Report Stack ID Baghouse Stack Licence No. 21514 Location Kirrawee NSW **Ektimo Staff** Aaron Davis / James Cullen State **Process Conditions** Cast Iron Furnace 1200kg cast 231129

Isokinetic Results	Results				
Sampling time	1440-1602				
	Concentration mg/m³	Mass Rate g/min			
Solid Particles	4.5	4.1			
Antimony	<0.005	<0.005			
Arsenic	<0.002	<0.002			
Beryllium	<0.0006	<0.0006			
Cadmium	<0.0005	<0.0005			
Chromium	<0.0008	<0.0007			
Cobalt	<0.0007	<0.0006			
Lead	0.013	0.011			
Manganese	<0.002	<0.002			
Mercury	<0.0004	<0.0004			
Nickel	<0.001	<0.001			
Selenium	<0.005	<0.005			
Tin	<0.002	<0.002			
Vanadium	<0.001	<0.001			
Type 1 & 2 Substances					
Upper Bound					
Total Type 1 Substances	≤0.021	≤0.019			
Total Type 2 Substances	<0.01	<0.01			
Total Type 1 & 2 Substances	≤0.035	≤0.032			
Isokinetic Sampling Parameters					
Sampling time, min	80)			
Isokinetic rate, %	98				
Gravimetric analysis date (total particulate)	11-12-	2023			

Total VOCs (as n-Propane)	Results			
	Concentration Mass Rate mg/m³ g/min			
Total	3.9 3.5			

VOC (speciated) Sampling time	Results 1440-1540
	Concentration Mass Rate mg/m³ g/min
Detection limit ⁽¹⁾	<0.2 <0.2
Benzene	4.6 4.2
Toluene	1.9 1.7
m + p-Xylene	0.41 0.37
Nonane	0.22 0.2
1,3,5-Trimethylbenzene	0.26 0.23

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,1,1-Trichloroethane,1,2-Dichloroethane, Cyclohexane, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Ethyl acrylate, Trichloroethylene, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 1,1,2-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, 2-Butoxyethanol, Cellosolve acetate, 1,1,2,2-Tetrachloroethane, Isopropylbenzene, alpha-Pinene, Propylbenzene, beta-Pinene, tert-Butylbenzene, 1,2,4-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane, Residuals as Toluene

Report No.: R015889 **Date:** 15/01/2024 Page: 7 of 11

Ektimo

3 Sample Plane Compliance

3.1 Baghouse Stack

Sampling Plane Details

Pollution control equipment
Sampling plane dimensions
Sampling plane area
Sampling port size, number
Duct orientation & shape
Downstream disturbance
Upstream disturbance
No. traverses & points sampled

Sample plane conformance to AS 4323.1 Conforming but non-ideal

The sampling plane is deemed to be non-ideal due to the following reasons:

The sampling plane is too near to the downstream disturbance but is greater than or equal to 1D

4 Plant Operating Conditions

Based on information received from Clingcast personnel, it is our understanding that samples were collected during typical plant operations.

Filter baghouse

1355 mm

1.44 m²

4" Flange (x2) Vertical Circular

Exit 1.5 D

2 16

Centrifugal fan 8 D

6 December 2023

Cast Iron Furnace operating normally (casting 1200kg)

Copper Furnace not operating.

See Clingcast Metals Pty Ltd records for complete process conditions.

Report No.: R015889 **Date:** 15/01/2024 Page: 8 of 11

Ektimo

5 Test Methods

All sampling and analysis were performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

				NATA accredited	
Parameter	Sampling method	Analysis method	Uncertainty*	Sampling	Analysis
Sampling points - Selection	NSW EPA TM-1 (AS 4323.1)	NA	NA	✓	NA
Flow rate, temperature & velocity	NSW EPA TM-2 (USEPA Method 2)	NSW EPA TM-2 (USEPA Method 2)	8%, 2%, 7%	NA	✓
Moisture content	NSW EPA TM-22 (USEPA Method 4)	NSW EPA TM-22 (USEPA Method 4)	8%	✓	✓
Molecular weight	NA	NSW EPA TM-23 (USEPA Method 3)	not specified	NA	✓
Dry gas density	NA	NSW EPA TM-23 (USEPA Method 3)	not specified	NA	✓
Carbon dioxide	NSW EPA TM-24 (USEPA Method 3A)	NSW EPA TM-24 (USEPA Method 3A)	13%	✓	✓
Oxygen	NSW EPA TM-25 (USEPA Method 3A)	NSW EPA TM-25 (USEPA Method 3A)	13%	✓	✓
Speciated volatile organic compounds (VOCs)	NSW EPA TM-34 ^d (USEPA Method 18)	Ektimo 344	19%	✓	✓†
Solid particles (total)	NSW EPA TM-15 (AS 4323.2)	NSW EPA TM-15 (AS 4323.2)	3%	✓	✓**
Total (gaseous & particulate) metals & metallic compounds	NSW EPA TM-12, NSW EPA TM-13, NSW EPA TM- 14 (USEPA Method 29)	Envirolab in-house methods Metals-020/021/022	15%	√	√ ‡
Type 1 substances (As, Cd, Hg, Pb, Sb)	NSW EPA TM-12 (USEPA Method 29)	Envirolab in-house methods Metals-020/021/022	15%	✓	✓‡
Type 2 substances (Be, Cr, Co, Mn, Ni, Se, Sn, V)	NSW EPA TM-13 (USEPA Method 29)	Envirolab in-house methods Metals-020/021/022	15%	✓	✓‡
Odour	NSW EPA OM-7 (AS 4323.3)	The Odour Unit (AS 4323.3)	refer to results	✓	√¶
Odour characterisation	NA	direct observation	NA	NA	×

^{*} Uncertainties cited in this table are estimated using typical values and are calculated at the 95% confidence level (coverage factor = 2).

[¶] Odour analysis conducted at The Odour Unit NSW EPA laboratory by forced choice olfactometry. Results were reported to Ektimo on 21 December 2023 in report 20231208_088.

 $^{^{\}dagger}$ Analysis performed by Ektimo. Results were reported to Ektimo on 21 December 2023 in report LV-005297.

^{**} Gravimetric analysis conducted at the Ektimo NSW laboratory.

[‡] Analysis performed by Envirolab, NATA accreditation number 2901. Results were reported to Ektimo on 3 January 2024 in report 340530.

^d Excludes recovery study as specified in section 8.4.3 of USEPA Test Method 18.

Report No.: R015889 **Date:** 15/01/2024 Page: 9 of 11

Ektimo

6 Deviations to Test Methods

TM-34 VOLATILE ORGANIC COMPOUNDS

Ektimo notes that the sampling and analysis of Volatile Organic Compounds (VOCs), per USEPA Method 18 has excluded the recovery study as specified in Section 8.4.3. Performing the recovery study described in Section 8.4.3 of USEPA Method 18 for analytes present at low levels is problematic. Given this, Ektimo applies a threshold of $50\mu g$ as a lower-bound mass, below which the 'spiking' of specific volatile organic compounds is not performed. For the purposes of this round of monitoring, the following compounds were present above the detection limit (0.1 μg) but were below $50\mu g$ (unless **bolded**). Therefore, recovery studies for the following analytes were not performed:

- Benzene (50 μg)
- Toluene (21 μg)
- m + p-Xylene (4.4 μg)
- Nonane (2.4 μg)
- 1,3,5-Trimethylbenzene (2.8 μg)

NIOSH 1501 - Hydrocarbons, Aromatic (Benzene)

Benzene is specifically referred as a compound to be sampled under this method, and the recommended adsorbent media for sampling is 'Solid Sorbent Tube, coconut shell charcoal'. Ektimo used this recommended sampling media (SKC brand 226-01).

7 Quality Assurance/Quality Control Information

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through mutual recognition arrangements with these organisations, NATA accreditation is recognised worldwide.

Unless specifically noted, all samples were collected and handled in accordance with Ektimo's QA/QC standards.

Report No.: R015889 Date: 15/01/2024 Page: 10 of 11

Ektimo

8 Definitions

The following symbols and abbreviations may be used in this test report:

% v/v Volume to volume ratio, dry or wet basis

ApproximatelyLess thanGreater than

APHA American Public Health Association, Standard Methods for the Examination of Water and Waste Water

AS Australian Standard

BaP-TEQ Benzo(a)pyrene toxic equivalents

BSP British standard pipe

CEM/CEMS Continuous emission monitoring/Continuous emission monitoring system

CTM Conditional test method

D Duct diameter or equivalent duct diameter for rectangular ducts

D₅₀ 'Cut size' of a cyclone is defined as the particle diameter at which the cyclone achieves a 50% collection efficiency i.e. half

of the particles are retained by the cyclone and half pass through it. The D_{50} method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than

the D_{50} of that cyclone and less than the D_{50} of the preceding cyclone.

DECC Department of Environment & Climate Change (NSW)

Disturbance A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes

centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes

or changes in pipe diameter.

DWER Department of Water and Environmental Regulation (WA)
DEHP Department of Environment and Heritage Protection (QLD)

EPA Environment Protection Authority
FTIR Fourier transform infra-red

ISC Intersociety Committee, Methods of Air Sampling and Analysis

ISO International Organisation for Standardisation

ITE Individual threshold estimate I-TEQ International toxic equivalents

Lower bound When an analyte is not present above the detection limit, the result is assumed to be equal to zero.

Medium bound When an analyte is not present above the detection limit, the result is assumed to be equal to half of the detection limit.

NA Not applicable
NATA National Associ

NATA National Association of Testing Authorities
NIOSH National Institute of Occupational Safety and Health

NT Not tested or results not required

OM Other approved method

OU Odour unit. One OU is that concentration of odorant(s) at standard conditions that elicits a physiological response from a

panel equivalent to that elicited by one Reference Odour Mass (ROM), evaporated in one cubic metre of neutral gas at

standard conditions.

PM₁₀ Particulate matter having an equivalent aerodynamic diameter less than or equal to 10 microns (μm). PM_{2.5} Particulate matter having an equivalent aerodynamic diameter less than or equal to 2.5 microns (μm).

PSA Particle size analysis. PSA provides a distribution of geometric diameters, for a given sample, determined using laser

diffraction.

RATA Relative accuracy test audit

Semi-quantified VOCs Unknown VOCs (those for which an analytical standard is not available), are identified by matching the mass spectrum of

the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration is determined by matching the area of the peak with the nearest suitable compound in the

analytical calibration standard mixture.

STP Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0 °C, at discharge

oxygen concentration and an absolute pressure of 101.325 kPa.

TM Test method

TOC Total organic carbon. This is the sum of all compounds of carbon which contain at least one carbon-to-carbon bond, plus

methane and its derivatives.

USEPA United States Environmental Protection Agency

VDI Verein Deutscher Ingenieure (Association of German Engineers)

Velocity difference The percentage difference between the average of initial flows and after flows.

Vic EPA Victorian Environment Protection Authority

VOC Volatile organic compound. A carbon-based chemical compound with a vapour pressure of at least 0.010 kPa at 25°C or

having a corresponding volatility under the given conditions of use. VOCs may contain oxygen, nitrogen and other elements. VOCs do not include carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.

WHO05-TEQ World Health Organisation toxic equivalents

XRD X-ray diffractometry

Upper bound When an analyte is not present above the detection limit, the result is assumed to be equal to the detection limit.

95% confidence interval Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result is outside

this range.

Report No.: R015889 **Dat**e: 15/01/2024 Page: 11 of 11

Ektimo

9 Appendices

Appendix A: Site Image

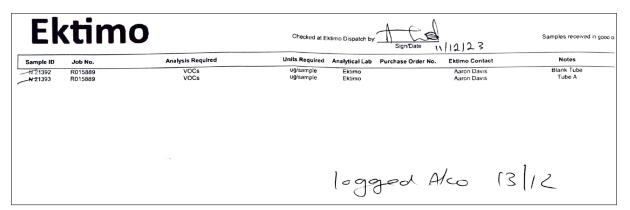


Image 1. Baghouse Stack

Report No.: R015889 **Dat**e: 15/01/2024

Ektimo

Appendix B: Chain(s) of Custody

Ektimo			Checked at Ekkino Dispatch by: Sum 11/12			Samples received in good order:	Sign/Date	
Sample ID	Job No.	Analysis Required	Units Required	Analytical Lab	Sign/Date Purchase Order No.	Ektimo Contact	Notes	TAT Required (days
N 21384 N 21385 N 21386 N 21386 N 21397 N 21398 N 21398 N 21399 N 21400 N 21400	R015889 R015889 R015899 R015889 R015889 R015889 R015889 R015889 R015889	Metals - Type 1 & 2 en/basencie (Sb. As, Cd. Ph. Hg, Be, Cr. Co, Mn, Ni, Se, V. Sh) Metals - Type 1 & 2 eu/basence (Sb. As, Cd. Ph. Hg, Be, Cr, Co, Mn, Ni, Se, V. Sh) Metals - Type 1 & 2 eu/basences (Sb. As, Cd. Ph. Hg, Be, Cr, Co, Mn, Ni, Se, V. Sh) Metals - Type 1 & 2 substances (Sb. As, Cd. Ph. Hg, Be, Cr, Co, Mn, Ni, Se, V. Sh) Hg Hg Hg Metals - Type 1 & 2 substances (Sb. As, Cd. Pb, Hg, Be, Cr, Co, Mn, Ni, Se, V. Sh)	ugʻsample ugʻsample ugʻsiro ugʻsiro ugʻsiro ugʻsiro ugʻsiro ugʻsiro ugʻsiro ugʻsiro	Envirolab Envirolab Envirolab Envirolab Envirolab Envirolab Envirolab Envirolab Envirolab Envirolab	W012815 W012815 W012815 W012815 W012815 W012815 W012815 W012815	Aaron Davis Aaron Davis Aaron Davis Aaron Davis Aaron Davis Aaron Davis Aaron Davis Aaron Davis Aaron Davis Aaron Davis	Blank Filter Filter A (N°4637) Blank Solution Imp A+B Blank Solution Imp Blank Solution	
			·			! ! !	Envirolab Services 20 Aut leg et Culorvacion New 257 Ph; (2) 1546 6260 20 20 20 20 20 20 20 20 20 20 20 20 20 2	

Report No.: R015889 **Date:** 15/01/2024

Ektimo

Appendix C: Laboratory Results

\(1300 364 005

\(+61 2 4003 3296

accounts@ektimo.com.au

ektimo.com.au

CERTIFICATE OF ANALYSIS

Testing Laboratory: Ektimo

> 26 Redland Drive Mitcham, VIC 3132

Report Number: LV-005297 Job Number: R015889 Date of Issue: 21/12/2023

Attention: Clingcast Address: 98 Bath Rd

Kirrawee, NSW 2232

Date samples received: 13/12/2023

Number of samples received:

Date samples analysed:

2 21/12/2023

No of samples analysed:

Test method(s) used: Ektimo 344

Comments

QC Acceptance Criteria: **Parameter** Criteria Pass/Fail Standard Curve $R^2 > 0.99$ **Pass** All samples <110% of highest standard **Pass** Range Repeat samples Between 80% - 120% **Pass Method Blanks** All method blanks < PQL **Pass**

QC sample 2 standard deviations of theoretical Pass **Chemical Expiry** All chemicals within expiry date **Pass**

This report supersedes any previous report(s) with this reference. Sample(s) have been analysed as received.

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA (National Association of Testing Authorities) to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Laboratory Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through the mutual recognition arrangements with both of these organisations, NATA accreditation is recognised world -wide.

A formal Quality Control program is in place at Ektimo to monitor analyses performed in the laboratory and sampling conducted in the field. The program is designed to check where appropriate; the sampling reproducibility, analytical method, accuracy, precision and the performance of the analyst. The Laboratory Manager is responsible for the administration and maintenance of this program.

REPORT AUTHORISATION

Version 231130

Matthew Cook Laboratory Manager

Daniel Balaam Senior Laboratory Chemist

NATA Accredited Laboratory 14601

Accredited for compliance with ISO/IEC 17025. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports

Analytical Results

Report No. LV-005297 Job No. R015889

Client Name: Clingcast

Parameter	Units	N21392 R015889	N21393 R015889	
	PQL	2.0	2.0	
Ethanol	μд	<2	<2	
Acetone	μg	<2	<2	
Isopropanol	μg	<2	<2	
Pentane	μg	<2	<2	
1,1-Dichloroethene	μg	<2	<2	
Acrylonitrile	μg	<2	<2	
Dichloromethane	μg	<2	<2	
trans-1,2-Dichloroethene	μg	<2	<2	
Methyl ethyl ketone	μg	<2	<2	
n-Hexane	μg	<2	<2	
cis-1,2-Dichloroethene	μg	<2	<2	
Ethyl acetate	μg	<2	<2	
Chloroform	μg	<2	<2	
1,1,1-Trichloroethane	μg	<2	<2	
1,2-Dichloroethane	μg	<2	<2	
Cyclohexane	μg	<2	<2	
Benzene		<2	50	
Carbon tetrachloride	μg	<2	<2	
Butanol	μg	<2	<2	
Isopropyl acetate	μg	<2	<2	
2-Methylhexane	μg	<2	<2	
	μg	<2	<2	
2,3-Dimethylpentane	μg			
1-Methoxy-2-propanol	μg	<2	<2	
3-Methylhexane	μg	<2	<2	
Heptane	μg	<2	<2	
Ethyl acrylate	μg	<2	<2	
Trichloroethylene	μg	<2	<2	
Methyl methacrylate	μg	<2	<2	
Propyl acetate	μg	<2	<2	
Methylcyclohexane	μg	<2	<2	
Methyl Isobutyl Ketone	μg	<2	<2	
Toluene	μg	<2	21	
1,1,2-Trichloroethane	μg	<2	<2	
2-Hexanone	μg	<2	<2	
Octane	μg	<2	<2	
Tetrachloroethene	μg	<2	<2	
Butyl acetate	μg	<2	<2	
Chlorobenzene	μg	<2	<2	
Ethylbenzene	μg	<2	<2	
m + p-Xylene	μg	<2	4.4	
1-Methoxy-2-propyl acetate	μg	<2	<2	
Styrene	μg	<2	<2	
o-Xylene	μg	<2	<2	
Butyl acrylate	μg	<2	<2	
Nonane	μg	<2	2.4	

^{*} Results marked with an asterisk are outside the acceptable calibration range of the instrument.

Analytical Results

Report No. LV-005297 Job No. R015889

Client Name: Clingcast

Parameter	Units	N21392 R015889	N21393 R015889
	PQL	2.0	2.0
2-Butoxyethanol	μg	<2	<2
Cellosolve acetate	μg	<2	<2
1,1,2,2-Tetrachloroethane	μg	<2	<2
Isopropylbenzene	μg	<2	<2
alpha-Pinene	μg	<2	<2
Propylbenzene	μg	<2	<2
1,3,5-Trimethylbenzene	μg	<2	2.8
beta-Pinene	μg	<2	<2
tert-Butylbenzene	μg	<2	<2
1,2,4-Trimethylbenzene	μg	<2	<2
Decane	μg	<2	<2
3-Carene	μg	<2	<2
1,2,3-Trimethylbenzene	μg	<2	<2
D-Limonene	μg	<2	<2
Undecane	μg	<2	<2
Dodecane	μg	<2	<2
Tridecane	μg	<2	<2
Tetradecane	μg	<2	<2
Residuals as Toluene	μg	<2	<2

NATA

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 340530

Client Details	
Client	Ektimo (Unanderra)
Attention	Aaron Davis
Address	1/251 Princes Hwy, Unanderra, NSW, 2526

Sample Details	
Your Reference	<u>R015889</u>
Number of Samples	2 Filter, 5 Water, 2 Liquid
Date samples received	19/12/2023
Date completed instructions received	19/12/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details				
Date results requested by	03/01/2024			
Date of Issue	03/01/2024			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISC	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By

Hannah Nguyen, Metals Supervisor

Authorised By

Nancy Zhang, Laboratory Manager

Metals on filters			
Our Reference		340530-1	340530-2
Your Reference	UNITS	N21394	N21395
Type of sample		Filter	Filter
Date prepared	-	22/12/2023	22/12/2023
Date analysed	-	28/12/2023	28/12/2023
Antimony	μg/filter	<5	<5
Arsenic	μg/filter	<2	<2
Cadmium	μg/filter	<0.5	<0.5
Lead	μg/filter	<1	12
Mercury	μg/filter	<0.2	<0.2
Beryllium	μg/filter	<0.5	<0.5
Chromium	μg/filter	<0.5	0.6
Cobalt	μg/filter	<0.5	<0.5
Manganese	μg/filter	<0.5	1
Nickel	μg/filter	<1	<1
Selenium	μg/filter	<5	<5
Vanadium	μg/filter	<1	<1
Tin	μg/filter	<2	<2

Metals in water - mass units						
Our Reference		340530-3	340530-4	340530-5	340530-6	340530-7
Your Reference	UNITS	N21396	N21397	N21398	N21399	N21400
Type of sample		Water	Water	Liquid	Liquid	Water
Volume	mL	205	196	202	179	244
Antimony	μg	<0.5	<0.5	[NA]	[NA]	[NA]
Arsenic	μg	<0.5	<0.5	[NA]	[NA]	[NA]
Cadmium	μg	0.1	0.2	[NA]	[NA]	[NA]
Lead	μg	<0.5	0.7	[NA]	[NA]	[NA]
Mercury	μд	<10	<10	<1	<1	<0.5
Beryllium	μg	<0.5	<0.5	[NA]	[NA]	[NA]
Chromium	μg	<0.5	0.7	[NA]	[NA]	[NA]
Cobalt	μg	<0.5	<0.5	[NA]	[NA]	[NA]
Manganese	μg	<3	<3	[NA]	[NA]	[NA]
Nickel	μg	<0.5	<0.5	[NA]	[NA]	[NA]
Selenium	μg	<0.5	<0.5	[NA]	[NA]	[NA]
/anadium	μg	<0.5	<0.5	[NA]	[NA]	[NA]
Tin	μg	0.6	0.5	[NA]	[NA]	[NA]
Date prepared	-	02/01/2024	02/01/2024	02/01/2024	02/01/2024	02/01/2024
Date analysed	-	02/01/2024	02/01/2024	02/01/2024	02/01/2024	02/01/2024
Antimony-Dissolved	μg/L	<1	<1	[NA]	[NA]	[NA]
Arsenic-Dissolved	μg/L	<1	<1	[NA]	[NA]	[NA]
Cadmium-Dissolved	μg/L	0.7	0.8	[NA]	[NA]	[NA]
_ead-Dissolved	μg/L	2	4	[NA]	[NA]	[NA]
Mercury-Dissolved	μg/L	<1	<1	<0.1	0.1	<0.05
Beryllium-Dissolved	μg/L	<0.5	<0.5	[NA]	[NA]	[NA]
Chromium-Dissolved	μg/L	2	3	[NA]	[NA]	[NA]
Cobalt-Dissolved	μg/L	<1	<1	[NA]	[NA]	[NA]
Manganese-Dissolved	μg/L	<5	<5	[NA]	[NA]	[NA]
Nickel-Dissolved	μg/L	<1	1	[NA]	[NA]	[NA]
Selenium-Dissolved	µg/L	<1	<1	[NA]	[NA]	[NA]
√anadium-Dissolved	μg/L	<1	<1	[NA]	[NA]	[NA]
Tin-Dissolved	μg/L	3	3	[NA]	[NA]	[NA]

Metals in water - mass units			
Our Reference		340530-8	340530-9
Your Reference	UNITS	N21401	N21402
Type of sample		Water	Water
Volume	mL	239	25
Antimony	μg	[NA]	<0.5
Arsenic	μg	[NA]	<0.5
Cadmium	μg	[NA]	1.3
Lead	μg	[NA]	4
Mercury	μg	<0.5	<10
Beryllium	μg	[NA]	<0.5
Chromium	μg	[NA]	<0.5
Cobalt	μg	[NA]	<0.5
Manganese	μg	[NA]	<3
Nickel	μg	[NA]	<0.5
Selenium	μg	[NA]	<0.5
Vanadium	μg	[NA]	<0.5
Tin	μg	[NA]	<0.5
Date prepared	-	02/01/2024	02/01/2024
Date analysed	-	02/01/2024	02/01/2024
Antimony-Dissolved	μg/L	[NA]	<1
Arsenic-Dissolved	μg/L	[NA]	7
Cadmium-Dissolved	μg/L	[NA]	52
Lead-Dissolved	μg/L	[NA]	170
Mercury-Dissolved	μg/L	<0.05	<1
Beryllium-Dissolved	μg/L	[NA]	<0.5
Chromium-Dissolved	μg/L	[NA]	20
Cobalt-Dissolved	μg/L	[NA]	<1
Manganese-Dissolved	μg/L	[NA]	85
Nickel-Dissolved	μg/L	[NA]	11
Selenium-Dissolved	μg/L	[NA]	<1
Vanadium-Dissolved	μg/L	[NA]	<1
Tin-Dissolved	μg/L	[NA]	5

Method ID	Methodology Summary
Metals-020/021/022	Determination of various metals on filters by ICP-AES/MS and or CV/AAS. Note - air volume measurements are not covered by Envirolab's NATA accreditation.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Salt forms (e.g. FeO, PbO, ZnO) are determinined stoichiometrically from the base metal concentration.

Envirolab Reference: 340530 Page | 5 of 10

Revision No: R00

QUALIT	Y CONTROL	: Metals	on filters			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			22/12/2023	[NT]		[NT]	[NT]	22/12/2023	
Date analysed	-			28/12/2023	[NT]		[NT]	[NT]	28/12/2023	
Antimony	μg/filter	5	Metals-020/021/022	<5	[NT]		[NT]	[NT]	101	
Arsenic	μg/filter	2	Metals-020/021/022	<2	[NT]		[NT]	[NT]	97	
Cadmium	μg/filter	0.5	Metals-020/021/022	<0.5	[NT]		[NT]	[NT]	97	
Lead	μg/filter	1	Metals-020/021/022	<1	[NT]		[NT]	[NT]	96	
Mercury	μg/filter	0.2	Metals-020/021/022	<0.2	[NT]		[NT]	[NT]	105	
Beryllium	μg/filter	0.5	Metals-020/021/022	<0.5	[NT]		[NT]	[NT]	98	
Chromium	μg/filter	0.5	Metals-020/021/022	<0.5	[NT]		[NT]	[NT]	97	
Cobalt	μg/filter	0.5	Metals-020/021/022	<0.5	[NT]		[NT]	[NT]	95	
Manganese	μg/filter	0.5	Metals-020/021/022	<0.5	[NT]		[NT]	[NT]	97	
Nickel	μg/filter	1	Metals-020/021/022	<1	[NT]		[NT]	[NT]	94	
Selenium	μg/filter	5	Metals-020/021/022	<5	[NT]		[NT]	[NT]	99	
Vanadium	μg/filter	1	Metals-020/021/022	<1	[NT]		[NT]	[NT]	97	
Tin	μg/filter	2	Metals-020/021/022	<2	[NT]		[NT]	[NT]	96	

QUALITY CON	NTROL: Meta	ls in wate	er - mass units			Du	ıplicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Antimony	μg	0.5	Metals-022	<0.5	[NT]		[NT]	[NT]	[NT]	
Arsenic	μg	0.5	Metals-022	<0.5	[NT]		[NT]	[NT]	[NT]	
Cadmium	μg	0.05	Metals-022	<0.05	[NT]		[NT]	[NT]	[NT]	
Lead	μg	0.5	Metals-022	<0.5	[NT]		[NT]	[NT]	[NT]	
Mercury	μg	0.5	Metals-021	<0.5	[NT]		[NT]	[NT]	[NT]	
Beryllium	μg	0.5	Metals-022	<0.5	[NT]		[NT]	[NT]	[NT]	
Chromium	μg	0.5	Metals-022	<0.5	[NT]		[NT]	[NT]	[NT]	
Cobalt	μд	0.5	Metals-022	<0.5	[NT]		[NT]	[NT]	[NT]	
Manganese	μg	3	Metals-022	<3	[NT]		[NT]	[NT]	[NT]	
Nickel	μg	0.5	Metals-022	<0.5	[NT]		[NT]	[NT]	[NT]	
Selenium	μд	0.5	Metals-022	<0.5	[NT]		[NT]	[NT]	[NT]	
Vanadium	μg	0.5	Metals-022	<0.5	[NT]		[NT]	[NT]	[NT]	
Tin	μg	0.5	Metals-022	<0.5	[NT]		[NT]	[NT]	[NT]	
Date prepared	-			02/01/2024	[NT]		[NT]	[NT]	02/01/2024	
Date analysed	-			02/01/2024	[NT]		[NT]	[NT]	02/01/2024	
Antimony-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	110	
Arsenic-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	96	
Lead-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	103	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	91	
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	[NT]		[NT]	[NT]	94	
Chromium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	106	
Cobalt-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	113	
Manganese-Dissolved	μg/L	5	Metals-022	<5	[NT]		[NT]	[NT]	108	
Nickel-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	111	
Selenium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	103	
Vanadium-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	112	
Tin-Dissolved	μg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	99	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 340530

Page | 8 of 10 Revision No: R00

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 340530 Page | 9 of 10

Revision No: R00

Report Comments

Metals in water - mass units - The PQL for Hg has been raised due to the sample matrix requiring dilution.

Envirolab Reference: 340530 Page | **10 of 10** Revision No: R00

☑ Sydney Laboratory

The Odour Unit Pty Ltd Level 3, 12/56 Church Avenue MASCOT NSW 2020 P: +61 2 9209 4420

E: info@odourunit.com.au

ABN: 53 091 165 061

☐ Brisbane Laboratory
The Odour Unit (OLD) Ptv

The Odour Unit (QLD) Pty Ltd 2/57 Neumann Road CAPALABA QLD 4165 P: +61 7 3245 1700

E: qldinfo@odourunit.com.au

ABN: 87 102 255 765

Odour Concentration Measurement Report

Sampling and	I I aboratory	Information
Samuumu and	Laboratory	mnormanon

Sampling and Laboratory information							
Organisation	Ektimo	Telephone	+61 417 386 242				
Contact	G. Edwards	Email	graham.edwards@ektimo.com.au				
Sampling Site	Not disclosed	Sampling Personnel	Ektimo				
Sampling Method	Not disclosed	Laboratory Location	Mascot NSW				

Order and Project Information

Order and Project inform	Halion		
Order requested by	G. Edwards	Order accepted by	A. Schulz
Date of order	07/12/2023	TOU Project #	N2017
Order number	W012911	Project Manager	A. Schulz
Signed by	G. Edwards	Panel Operator	A. Schulz

Investigated Item Odour concentration in odour units 'ou', determined by sensory odour concentration measurements, of an

odour sample supplied in a sampling bag.

Identification The odour sample bags were labelled individually. Each label recorded the testing laboratory, sample

number, sampling location (or Identification), sampling date and time, dilution ratio (if dilution was used) and

whether further chemical analysis was required.

Method The odour concentration measurements were performed using dynamic olfactometry according to the

Australian/New Zealand Standard: Stationary source emissions – *Part 3: 'Determination of odour concentration by dynamic olfactometry* (AS/NZS 4323.3). The odour perception characteristics of the panel within the presentation series for the samples were analogous to that for butanol calibration. Any deviation

from the Australian standard is recorded in the 'Comments' section of this report.

Measuring Range The measuring range of the olfactometer is $2^2 \le \chi \le 2^{18}$ ou. If the measuring range was insufficient the odour

samples will have been pre-diluted. The machine is not calibrated beyond dilution setting 217. This is

specifically mentioned with the results.

Environment The measurements were performed in an air- and odour-conditioned room. The room temperature is

maintained at 22 °C ±3 °C.

Measuring Dates The date of each measurement is specified with the results.

TOU-OLF-VO4

Laboratory Precision The precision of this laboratory (expressed as repeatability) for sensory quality must be $r \le 0.477$ in

accordance with the AS/NZS 4323.3.

r = 0.461 Compliance – Yes

Laboratory Accuracy The accuracy of this laboratory for sensory quality must be $A \le 0.217$ in accordance with the AS/NZS 4323.3.

A = 0.216 Compliance – Yes

Lower Detection Limit (LDL)

The LDL for the olfactometer has been determined to be 16 ou, which is 4 times the lowest dilution setting.

Traceability The results of the tests, calibrations and/or measurements included in this document are traceable to

Australian/national standards. The assessors are individually selected to comply with fixed criteria and are monitored in time to keep within the limits of the standard. The results from the assessors are traceable to

primary standards of n-butanol in nitrogen. Note Disclaimers on last page of this document.

Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced, except in full.

Date: Thursday, 21 December 2023 Panel Roster Number: SYD20231207_087

A. Schulz Authorised Signatory

Revision: 14 Revision Date: 17.08.2022 Approved By: TS 1

THE ODOUR UNIT

Odour Sample Measurement Results Panel Roster Number: SYD20231207_087

Sample ID / Location	Laboratory ID	Sampling Date & Time	Analysis Date & Time	Panel Size	Valid ITEs	Final Odour Concentration (ou)
Barrel #59 Baghouse (1 of 2)	SC23632	6/12/2023 1440 – 1455 hrs	7/12/2023 1046 hrs	5	10	274
Barrel #44 Baghouse (2 of 2)	SC23633	6/12/2023 1500 – 1515 hrs	7/12/2023 1122 hrs	5	10	97

Samples Received in Laboratory – From: Ektimo Date: 07/12/2023 Time: 0830 hrs

Note: The following are not covered by the NATA Accreditation issued to The Odour Unit:

- 1. The collection of samples by a method that is not prescribed by AS/NZS 4323.3.
- 2. Final results that have been modified by the dilution factors where parties other than The Odour Unit have performed the dilution of samples.

THE ODOUR UNIT

Odour Panel Calibration Results

Reference Odorant	Reference Odorant Panel Roster Number	Concentration of Reference gas (ppb)	Panel Target Range for n-butanol (ppb)	Measured Concentration (ou)	Measured Panel Threshold (ppb)	Does this panel calibration measurement comply with AS/NZS 4323.3 (Yes / No)
n-butanol	SYD20231207_087	44,800	20 ≤ χ ≤ 80	832	54	Yes

Comments Odour characters (non-NATA accredited) as determined by odour laboratory panel:

SC23629 – musty, water SC23630 – musty, water

Departures

Clause 9.5.3 (d) - Cross-sectional distribution of airflow and concentration from port-openings are not checked due to impracticality of the requirement .

Disclaimers

- 1. Parties, other than The Odour Unit, responsible for collecting odour samples have advised that they have voluntarily furnished these odour samples, appropriately collected and labelled, to The Odour Unit for the purpose of odour testing.
- 2. The collection of odour samples by parties other than The Odour Unit relinquishes The Odour Unit from all responsibility for the sample collection and any effects or actions that the results from the test(s) may have.
- 3. Any comments included in, or attachments to, this Report are not covered by the NATA Accreditation issued to The Odour Unit.
- 4. This report shall not be reproduced, except in full, without written approval of The Odour Unit.

Report Status

Statu	ıs Version	Prepared by	Date	Checked by	Date	Change	Reason
Draf	t 0.1	AS	21/12/2023	MA	21/12/2023	-	
Fina	ıl 1.0	AS	21/12/2023	MA	21/12/2023	-	
Revis	ed 1.1					-	

END OF DOCUMENT

Ektimo

ektimo.com.au 1300 364 005

MELBOURNE (Head Office)

26 Redland Drive Mitcham VIC 3132 AUSTRALIA

SYDNEY

6/78 Reserve Road Artarmon NSW 2064 AUSTRALIA

WOLLONGONG

1/251 Princes Highway Unanderra NSW 2526 AUSTRALIA

PERTH

52 Cooper Road Cockburn Central WA 6164 AUSTRALIA

BRISBANE

3/109 Riverside Place Morningside QLD 4170 AUSTRALIA