Ektimo

Clingcast Metals, Kirrawee Emission Testing Report Report Number R013734

ektimo.com.au

Document Information

Template Version 190722

Client Name:	Clingcast Metals
Report Number:	R013734
Date of Issue:	1 December 2022
Attention:	Paul Clingan
Address:	98 Bath Rd Kirrawee NSW 2232
Testing Laboratory:	Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

Graham Edwards Senior air Monitoring Consultant NATA Accredited Laboratory No. 14601

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration, and inspection reports.

This document is confidential and is prepared for the exclusive use of Clingcast Metals and those granted permission by Clingcast Metals. The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo's terms of NATA accreditation as described in the Test Methods table. This does not include calculations that use data supplied by third-parties, comments, conclusions, or recommendations based upon the results. Refer to 'Test Methods' for full details of testing covered by NATA accreditation.

Table of Contents

1		Executive Summary	.4
	1.1	Background	.4
	1.2	Project Objective & Overview	.4
	1.3	Licence Comparison	.4
2		Results	.5
	2.1	Baghouse Stack	.5
3		Plant Operating Conditions	.8
4		Test Methods	.8
	4.1	Deviations to Test Methods	.9
5		Quality Assurance/Quality Control Information	.9
6		Definitions 1	.0
7		Appendix 1: Site Photo	.1

1 Executive Summary

1.1 Background

Ektimo was engaged by Clingcast Metals to perform emission testing at their Kirrawee plant in accordance with Environmental Licence 21514. Testing was performed during the ~80-minute period after the completion of casting, whilst the baghouse stack was continuing to exhaust to atmosphere. Once the casting process was completed, the Ektimo team began to initiate the sampling of test parameters outlined in the following section.

Testing was performed over two separate dates due to contamination identified during the analysis of speciated volatile organic compounds (VOCs). The retest for VOCs was successfully performed on November 17th, 2022.

1.2 Project Objective & Overview

The objective of the project was to conduct a programme to quantify emissions from one (1) discharge point to determine compliance with Clingcast Metals' Environmental Licence.

Emission testing was performed as follows:

Location	Test Date	Test Parameters*
Baghouse Stack	20 October 2022	Solid particles Carbon dioxide, oxygen Metals type 1 & 2 substances (Sb, As, Cd, Pb, Hg, Be, Cr, Co, Mn, Ni, Se, Sn, V) Odour and character
	17 November 2022	Speciated volatile organic compounds (VOCs)

* Flow rate, velocity, temperature, and moisture were also determined.

All results are reported on a dry basis at STP (except odour wet – STP).

Plant operating conditions have been noted in the report.

1.3 Licence Comparison

The following licence comparison table shows that all analytes highlighted in green are within the licence limit set by the NSW EPA as per licence 21514 (last amended on 5 May 2021).

Location Description	Pollutant	Units	Licence Limit	Detected values
	Total solid particles	mg/m ³	5	<2
Baghouse Stack	Type 1 & 2 substances in aggregate	mg/m ³	0.1	≤0.025
	Volatile organic compounds (as n-propane)	mg/m ³	5	1.4

Please note that the measurement uncertainty associated with the test results was not considered when determining whether the results were compliant or non-compliant.

Refer to the Test Methods table for the measurement uncertainties.

2 Results

2.1 Baghouse Stack

Date	20/10/2022		Client	Clingcast Metals	
Report	R013734		Stack ID	Baghouse Stack	
Licence No.	21514		Location	Ki rra we e	
Ektimo Staff	Graham Edwards, Bre	andan Scholand	State	NSW	
Process Conditions	Please refer to client	records.			220920
Sampling Plane Details					
Sampling plane dimensi	ons	135	5 mm		
Sampling plane area		1.4	14 m²		
Sampling port size, num	ber & depth	4" Flange	(x2), 335 mm		
Duct orientation & shap	e	Vertica	l Circular		
Downstream disturbance	9	Exi	t 1.5 D		
Upstream disturbance		Centrifugal far	18D		
No. traverses & points sa	ampled	2	2 16		
Sample plane conformation	nce to AS 4323.1	Conforming	but non-idea	I	
The sampling plane is deer	ned to be non-ideal due	to the following reasons:			
The highest to lowest ga	s velocity ratio exceed	s 1.6:1			
The sampling plane is to	po near to the downstr	eam disturbance but is g	reater than o	r equal to 1D	
Charle Damana at a ma					
Stack Parameters		1.4			
Moisture content, %V/V	la mala	1.4 28.0 (wet)		20 0 (dm)	
Gas molecular weight, g	/g more 3	28.9 (wet)		29.0 (dry)	
Gas density at STP, kg/m	conditions ka/m ³	1.29 (Wel)		1.30 (dry)	
Gas defisity at discharge	conuntions, kg/m	1.15			
Gas Flow Parameters					
Flow measurement time	(s) (hhmm)	1320 & 1610			
Temperature, °C		30			
Temperature, K		304			
Velocity at sampling pla	ne, m/s	11			
Volumetric flow rate, act	ual, m³/s	16			
Volumetric flow rate (we	et STP), m³/s	14			
Volumetric flow rate (dry	/ STP), m³/s	14			
Mass flow rate (wet bas	is), kg/hour	67000			
Gas Analyser Results		Average	Mir	nimum	Maximum
	Samplingtime	1421 - 1602	142	1 - 1602	1421 - 1602

Gas Analyser Results	Average	Minimum	Maximum
Sampling tin	ne 1421 - 1602	1421 - 1602	1421 - 1602
	Concentration	Concentration	Concentration
	%v/v	%v/v	%v/v
Carbon dioxide	<0.4	<0.4	<0.4
Oxygen	21	20.7	21.1
-	·		•

Odour		Average		Test 1		Test 2	
	Samplingtime			1417 - 1	1436	1436 - 1	1516
			Odourant		Odourant		Odourant
		Concentration ou	Flow Rate oum³/min	Concentration ou	Flow Rate oum³/min	Concentration ou	Flow Rate oum³/min
Results		37	31000	28	24000	45	39000
Lower uncertainty limit		37		28		45	
Upper uncertainty limit		37		28		45	
Analysis date & time				21/10/22	, 0831	21/10/22	, 0831
Holding time				18 ho	urs	17 ho	urs
Dilution factor				1		1	
Bagmaterial				Nalop	han	Nalop	han
Butanol threshold (ppb)		70					
Laboratory temp (°C)		22					

Date	20/10/2022		Client	Clingcast Metals	
Report	R013734		Stack ID	Baghouse Stack	
Licence No.	21514		Location	Kirrawee	
Ektimo Staff	Graham Edwards, Brea	andan Scholand	State	NSW	
Process Conditions	Please refer to client	records.			220920
Isokinetic Results			Res	ults	
	Samplingtime		1426	-1546	
			Concentration mg/m³	Mass Rate g/min	
Solid Particles			<2	<2	
Antimony			<0.004	<0.003	
Arsenic			<0.002	<0.001	
Beryllium			<0.0005	<0.0004	
Cadmium			<0.0006	<0.0005	
Chromium			0.0011	0.00094	
Cobalt			<0.0005	<0.0005	
Lead			0.0046	0.0039	
Manganese			0.0026	0.0022	
Mercury			<0.0004	<0.0003	
Nickel			<0.002	<0.001	
Selenium			<0.004	<0.004	
Tin			<0.003	<0.002	
Vanadium			<0.0009	<0.0008	
Type 1 & 2 Substances					
Upper Bound					
Total Type 1 Substances	5		≤0.011	≤0.0094	
Total Type 2 Substances	5		≤0.014	≤0.012	
Total Type 1 & 2 Substan	nces		≤0.025	≤0.022	
Isokinetic Sampling Paran	neters				
Sampling time, min			٤	30	
Isokinetic rate, %			1	01	
Gravimetric analysis da	te (total particulate)		27-10)-2022	

Date	17/11/2022		Client	Clingcast Metals
Report	R013734		Stack ID	Baghouse Stack
Licence No.	21514		Location	Kirrawee
Ektimo Staff	Adnan Latif / Ahmad Ra	amiz	State	NSW
Process Conditions	Please refer to client r	ecords.		221
Sampling Plane Details				
Sampling plane dimensi	ions	1355	i mm	
Sampling plane area		1.4	4 m²	
Sampling port size, num	ber & depth	4" Flange (x2), 335 mm	
Duct orientation & shap	e	Vertical	Circular	
Downstream disturbance	e	Exit	1.5 D	
Upstream disturbance		Centrifugal fan	8 D	
No. traverses & points sa	ampled	2	16	
Sample plane conforma	nce to AS 4323.1	Conforming	out non-ideal	
Commonto				
The discharge is assume	d to be compared of d	wair and moisture		
The unscharge is assume	eu to be composed of di	y all allu moistule		
The sampling plane is deer	ned to be non-ideal due to	the following reasons:		
The sampling plane is to	no near to the downstre	am disturbance but is gro	eater than or	equal to 1D
ine sumpring plane is a				
Stack Parameters				
Moisture content, %v/v		1.2		
Gas molecular weight, g	/g mole	28.8 (wet)		29.0 (dry)
Gas density at STP, kg/m	3	1.29 (wet)		1.29 (dry)
Gas density at discharge	e conditions, kg/m ³	1.15		
Gas Flow Parameters				
Flow measurement time	(s) (hhmm)	1415 & 1546		
Temperature, °C		31		
Temperature, K		304		
Velocity at sampling pla	ne, m/s	11		
Volumetric flow rate, act	tual, m³/s	16		
Volumetric flow rate (we	et STP), m ³ /s	14		
Volumetric flow rate (dry	/SIP), m²/s	14		
Mass now rate (wet bas	15), Kg/11001	00000		
Total VOCs (as n-Propan	e)		Res	ults
· · · · · · · · · · · · · · · · · · ·	-,			
			Concentration	Mass Pate
			mg/m ³	g/min
Total			1 /	1.2
10(4)			1.4	1.2
VOC (speciated)			Por	ulte
voc (speciated)	Constant in the second		1/20	-1530
	Samplingtime		1439	1999
			_	
			Concentration	Mass Rate
			ing/ill*	y, mm
Detection limit ⁽¹⁾			<0.1	<0.08
Ethanol			0.59	0.5

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, Dichloromethane, trans-12-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-12-Dichloroethene, Ethyl acetate, Chloroform, 1,1-Trichloroethane, 12-Dichloroethane, Cyclohexane, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylhexane, 2,3-Dimethylpentane, 1-Methoxy-2-propanol, 3-Methylhexane, Heptane, Ethyl acylate, Trichloroethene, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, 1,12-Trichloroethane, 0, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, m + p-Xylene, 1-Methoxy-2-propyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,2-Trimethylbenzene, alpha-Pinene, Propylbenzene, 13,5-Trimethylbenzene, beta-Pinene, tert-Butylbenzene, 1,2-4-Trimethylbenzene, Decane, 3-Carene, 1,2-3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane, Tetradecane

0.27

0.94

0.22

0.23

0.79

0.19

Acetone

Benzene

Toluene

3 Plant Operating Conditions

During the sampling times on October 20th and November 17th, 2022, the cast iron furnace was operating normally (charging), melting, and casting of ductile iron/SG and cast iron. The copper furnace was operating normally (charging)

4 Test Methods

All sampling and analysis performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

				NATA ac	credited
Parameter	Sampling method	Analysis method	Uncertainty*	Sampling	Analysis
Sampling points - Selection	NSW EPA TM-1 (USEPA Method 1)	NA	NA	✓	NA
Flow rate, temperature & velocity	NSW EPA TM-2 (USEPA Method 2)	NSW EPA TM-2 (USEPA Method 2)	8%, 2%, 7%	NA	\checkmark
Moisture content	NSW EPA TM-22 (USEPA Method 4)	NSW EPA TM-22 (USEPA Method 4)	8%	\checkmark	\checkmark
Molecular weight	NA	NSW EPA TM-23 (USEPA Method 3)	not specified	NA	\checkmark
Dry gas density	NA	NSW EPA TM-23 (USEPA Method 3)	not specified	NA	\checkmark
Carbon dioxide	NSW EPA TM-24 (USEPA Method 3A)	NSW EPA TM-24 (USEPA Method 3A)	13%	\checkmark	\checkmark
Oxygen	NSW EPA TM-25 (USEPA Method 3A)	NSW EPA TM-25 (USEPA Method 3A)	13%	\checkmark	\checkmark
Speciated volatile organic compounds (VOCs)	NSW EPA TM-34 ^d (USEPA Method 18)	Ektimo 344	19%	✓	\checkmark^{\dagger}
Solid particles (total)	NSW EPA TM-15 (AS 4323.2)	NSW EPA TM-15 (AS 4323.2)	3%	✓	$\checkmark^{\dagger\dagger}$
Total (gaseous & particulate) metals & metallic compounds	NSW EPA TM-12, NSW EPA TM- 13, NSW EPA TM-14 (USEPA Method 29)	Envirolab in-house methods Metals-006, Metals-022 & Metals-021	15%	√	\checkmark^{\ddagger}
Type 1 substances (As, Cd, Hg, Pb, Sb)	NSW EPA TM-12 (USEPA Method 29)	Envirolab in-house methods Metals-006, Metals-022 & Metals-021	15%	√	\checkmark^{\ddagger}
Type 2 substances (Be, Cr, Co, Mn, Ni, Se, Sn, V)	NSW EPA TM-13 (USEPA Method 29)	Envirolab in-house methods Metals-006, Metals-022 & Metals-021	15%	✓	\checkmark^{\ddagger}
Odour	NSW EPA OM-7 (AS 4323.3)	The Odour Unit method AS 4323.3	refer to results	✓	ô
Odour characterisation	NA	direct observation	NA	NA	×
					220914

* Uncertainties cited in this table are estimated using typical values and are calculated at the 95% confidence level (coverage factor = 2).

[†] Analysis performed by Ektimo. Result was reported to Ektimo on 28 November 2022 in report LV-003621.

^{††} Gravimetric analysis conducted at the Ektimo, NSW laboratory, NATA accreditation number 14601.

- ^{*} Odour analysis performed by The Odour Unit, Mascot, NSW by forced choice olfactometry, NATA accreditation number 14974. Results was reported on 21 October 2022 in report SYD20221021_076.
- [‡] Analysis performed by Envirolab, NATA accreditation number 2901. Result was reported to Ektimo on 9 November 2022 in report 309627-[R00].
- ^d Excludes recovery study as specified in Section 8.4.3 of USEPA Test Method 18.

4.1 Deviations to Test Methods

NSW EPA TM-34 (USEPA 18)

Ektimo notes that the sampling and analysis of Volatile Organic Compounds (VOCs), per USEPA Method 18 has excluded the recovery study as specified in Section 8.4.3. Performing the recovery study described in Section 8.4.3 of USEPA Method 18 for analytes present at low levels is problematic. Given this, Ektimo applies a threshold of 50µg as a lower-bound mass, below which the 'spiking' of specific volatile organic compounds is not performed. For the purposes of this round of monitoring, all compounds (outlined below) were below 50µg. Therefore, recovery studies were not performed.

- Ethanol (12 µg)
- Acetone (5.4 µg)
- Benzene (19 μg)
- Toluene (4.5 μg)

5 Quality Assurance/Quality Control Information

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through mutual recognition arrangements with these organisations, NATA accreditation is recognised worldwide.

6 Definitions

The following symbols and abbreviations may be used in this test report:

% v/v	Volume to volume ratio, dry or wet basis
~	Approximately
<	Less than
>	Greater than
≥	Greater than or equal to
APHA	American Public Health Association, Standard Methods for the Examination of Water and Waste Water
AS	Australian Standard
BSP	British standard pipe
CARB	Californian Air Resources Board
CEM/CEMS	Continuous emission monitoring/Continuous emission monitoring system
CTM	Conditional test method
D	Duct diameter or equivalent duct diameter for rectangular ducts
D ₅₀	'Cut size' of a cyclone is defined as the particle diameter at which the cyclone achieves a 50% collection efficiency i.e. half
	of the particles are retained by the cyclone and half pass through it. The D ₅₀ method simplifies the capture efficiency distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than
	the $D_{s,0}$ of that cyclone and less than the $D_{s,0}$ of the preceding cyclone.
DECC	Department of Environment & Climate Change (NSW)
Disturbance	A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes
	centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction changes
	or changes in pipe dameter.
	Department of Water and Environmental Regulation (WA)
	Department of Environment and Heritage Protection (QLD)
EPA	Environment Protection Authority
FIIR	Fourier transform infra-fed
ISC	Intersociety Committee, Methods of Air Sampling and Analysis
	International Organisation for standardisation
IIE Lower bound	mainioual infestion estimate
Lower bound	when an analyte is not present above the detection limit, the result is assumed to be equal to zero.
	When an analyte is not present above the detection limit, the result is assumed to be equal to hall of the detection limit.
	Not applicable
	National Association of resulting Automatical Sector and Health
	National institute of Occupational safety and Health
	Not tested of results not required
	Uner approved method
00	panel equivalent to that elicited by one Reference Odour Mass (ROM), evaporated in one cubic metre of neutral gas at
DN 4	standard conditions.
PIVI10	Particulate matter having an equivalent aerodynamic diameter less than or equal to 10 microns (μ m).
	Particulate matter naving an equivalent aerodynamic diameter less tran or equal to 2.5 microns (µm).
PSA	diffraction.
RATA	Relative accuracy test audit
Semi-quantified VOCs	Unknown VOCs (those for which an analytical standard is not available), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration is determined by matching the area of the peak with the nearest suitable compound in the
	analytical calibration standard mixture.
STP	Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0 °C, at discharge
	oxygen concentration and an absolute pressure of 101.325 kPa.
TM	Test method
ТОС	Total organic carbon. This is the sum of all compounds of carbon which contain at least one carbon-to-carbon bond, plus methane and its derivatives.
USEPA	United States Environmental Protection Agency
VDI	Verein Deutscher Ingenieure (Association of German Engineers)
Velocity difference	The percentage difference between the average of initial flows and after flows.
Vic EPA	Victorian Environment Protection Authority
VOC	Volatile organic compound. A carbon-based chemical compound with a vapour pressure of at least 0.010 kPa at 25°C or
	having a corresponding volatility under the given conditions of use. VOCs may contain oxygen, nitrogen and other
	elements. VOCs do not include carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.
XRD	X-ray diffractometry
Upper bound	When an analyte is not present above the detection limit, the result is assumed to be equal to the detection limit.
95% confidence interval	Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result is outside this range.

7 Appendix 1: Site Photo

Figure 1 - Baghouse Stack

Ektimo

ektimo.com.au 1300 364 005

MELBOURNE (Head Office) 26 Redland Drive Mitcham VIC 3132 AUSTRALIA

SYDNEY 6/78 Reserve Road Artarmon NSW 2064 AUSTRALIA

WOLLONGONG 1/251 Princes Highway Unanderra NSW 2526 AUSTRALIA

PERTH 52 Cooper Road Cockburn Central WA 6164 AUSTRALIA

BRISBANE 3/109 Riverside Place Morningside QLD 4170 AUSTRALIA